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Abstract
The mixing of states with opposite chiralities in a quantum Hall system is shown
to have a delocalization effect. It is possible that extended states may form
bands because of this mixing, as is shown through a numerical calculation on
a two-channel network model. Based on this result, a new phase diagram with
a narrow metallic phase separating two adjacent QH phases and/or separating
a QH phase from the insulating phase is proposed. The data from recent
non-scaling experiments are reanalysed and it is shown that they seem to be
consistent with the new phase diagram. However, due to finite-size effects,
further study on large system size is still needed to conclude whether there are
extended state bands in the thermodynamic limit.

1. Introduction

According to the scaling theory of localization [1], all electrons in a disordered two-
dimensional system are localized in the absence of a magnetic field. In the presence of
a strong magnetic field B , a series of disorder-broadened Landau bands (LBs) will appear,
and an extended state resides at the centre of each band while states at other energies are
localized [2]. The integrally quantized Hall plateaus (IQHPs) are observed when the Fermi
level lies in localized states, with the value of the Hall conductance, σxy = ne2/h, related to
the number of occupied extended states (n). Many previous studies [3–23] have been focused
on so-called plateau transitions. The issue there is how the Hall conductance jumps from one
quantized value to another when the Fermi level crosses an extended state. There are two

0953-8984/06/062029+27$30.00 © 2006 IOP Publishing Ltd Printed in the UK 2029

http://dx.doi.org/10.1088/0953-8984/18/6/017
http://stacks.iop.org/JPhysCM/18/2029


2030 G Xiong et al

competing proposals. One is the global phase diagram [5] based on the levitation of extended
states conjectured by Khmelnitskii [24] and Laughlin [25]. A crucial prediction of this phase
diagram is that an integer quantum Hall effect (IQHE) state n in general can only go into
another IQHE state n ± 1, and that a transition into an insulating state is allowed only from the
n = 1 state. The other is the so-called direct transition phase diagram [6] in which transitions
from any IQHE state to the insulating phase are allowed when the disorder is increased at fixed
B . So far, most experiments [17, 18] are consistent with the direct transition phase diagram
although the early experiments were interpreted in terms of the global phase diagram.

One important yet overlooked issue regarding IQHE is the nature of both plateau–
plateau and plateau–insulator transitions. In all existing theoretical studies, these transitions
are assumed to be continuous quantum phase transitions. This assumption is mainly due
to the early scaling experiments [3, 4]. The fingerprint of a continuous phase transition
is scaling laws around the transition point. In the case of the IQHE, it means algebraic
divergence of longitudinal resistance slope and algebraic shrinkage of longitudinal resistance
peak width in temperature T at the transition point. However, some experiments show that
the longitudinal resistance slope remains finite [21] and the resistance peak width remains
nonzero [22, 23] when extrapolated to zero temperature. This implies a non-scaling behaviour
around a transition point, contradicting the expectation of continuous quantum phase transitions
suggested by the theories. Thus the nature of these transitions should be re-examined.

The samples used in the non-scaling experiments [21] are relatively dirty, and strong
disorders should lead to a strong inter-Landau-band mixing. In a recent letter [26], we showed
that the single extended state at each LB centre broadens into a narrow band of extended states
when the interband mixing of opposite chirality is taken into account. A narrow metallic phase
exists between two adjacent IQHE phases and between an IQHE phase and the insulating phase.
A plateau–plateau or plateau–insulator transition corresponds to two consecutive quantum
phase transitions instead of one as suggested by existing theories. This possibility has usually
been overlooked in previous studies where each longitudinal conductance peak is related to a
single extended state [16]. In this paper we shall present the detailed description of this study.

The paper is organized as follows. The semiclassical network model for two coupled LBs
is illustrated in section 2. It is shown that mixing of localized states of opposite chirality tends
to delocalize a state while mixing of states of the same chirality does not. The similarities
and differences between the case we consider and models for double-layer systems and spin-
degenerate systems are also discussed. Our approach, the level-statistics technique, is described
in section 3. Section 4 has four subsections containing our numerical results, conclusions and
discussions. Section 4.1 provides our main numerical results and conclusions. In section 4.2,
possible finite size effects and a theoretical understanding for non-scaling behaviours based on
standard scaling theory [27, 28] are discussed. Section 4.3 gives further numerical results
which directly show a narrow band of extended states in several cases, and a new phase
diagram of quantum Hall systems is proposed. To further support our results, in section 4.4
we reanalyse the original data from the non-scaling experiments [21] and show that the non-
scaling behaviours in each IQHP–insulator transition can be attributed to two quantum phase
transition points. Recent experiments [29–33], in which scaling behaviours are observed, are
also discussed and shown to be not inconsistent with early non-scaling experiments and our
numerical results. The conclusions of this paper are summarized in section 5.

2. The semiclassical model including inter-Landau-band mixing

According to the semiclassical theory [34], the motion of an electron in a strong magnetic field
and in a smooth random potential can be decomposed into a rapid cyclotron motion and a slow
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drifting motion of its guiding centre. The kinetic energy of the cyclotron motion is quantized by
En = (n + 1/2)h̄ωc, where ωc is the cyclotron frequency and n the LB index. The trajectory
of the drifting motion of the guiding centre is thus along an equipotential contour of value
V0 = E − En , where E is the total energy of the electron. The local drifting velocity �v(�r) is
determined by (in SI units)

�v(�r) = ∇V (�r) × �B/(eB2) (1)

where ∇V (�r) is the local potential gradient. The equipotential contour consists of many
closed loops. Neglecting quantum tunnelling effects, each loop corresponds to trajectory of
one eigenstate. The motion of electrons is thus confined around these loops with deviations
typically of the order of the cyclotron radius lc = √

h̄/(eB).
To illustrate this semiclassical picture, let us think of the smooth random potential as a

landscape of many peaks and valleys distributed randomly in the plane. Imagine that the
landscape is filled with water up to a height of value V0. The equipotential contour of
value V0 is the boundary of land and water. According to the percolation theory [35], the
percolation threshold of a two-dimensional (2D) continuum model is pc = 1/2, where pc is
the occupation probability of the medium (the land or the water). For simplicity, we suppose
that the distribution of the random potential is symmetric around zero. By symmetry the
percolation point of both the land and the water is at V0 = 0 in this case. When V0 < 0,
the occupation probability of land is above 1/2. Thus the land percolates and the water forms
isolated lakes. These lakes are around valleys and their boundaries correspond to trajectories of
localized states. In the case of V0 > 0, the water forms a percolating sea and the land becomes
isolated islands around potential peaks. The boundary of each island is an electronic state. In
short, semiclassical electronic states in a QH system are equipotential loops. These loops are
localized around potential peaks for V0 > 0 and around potential valleys for V0 < 0. The
drifting direction of each loop is unidirectional. This means that they are chiral states. From
equation (1) one can see that states around peaks have opposite chirality from states around
valleys because the directions of the local potential gradient around a peak are opposite to that
around a valley. If one views the plane from the direction opposite to the magnetic field, the
drifting is clockwise around valleys and anticlockwise around peaks, as shown in figure 1.
Right at V0 = 0 both the land and the water percolate, and the intersection between them is the
trajectory of an extended state. This means that there is only one extended state at V0 = 0 for
each LB. As V0 approaches zero from both sides, the localization length ξ of the system tends
to diverge as

ξ ∝ |V0|−ν (2)

where the critical exponent ν = 4/3 according to the classical percolation theory. Quantum
effects are ignored in the above semiclassical argument. When two spatially separated loops on
the same equipotential contour come close at saddle points of the random potential, quantum
tunnellings should be considered. An example in the case of V0 < 0 is shown in figure 1(a).
In the absence of interband mixing, numerical calculations have suggested that there is still
only one extended state in each LB while the value of the critical exponent ν is modified to be
around 7/3 [10].

In the case when the width of the LBs is comparable with the spacing between adjacent
LBs (the Landau gap), inter-Landau-band mixing should no longer be ignored. In order to
investigate the consequences of inter-Landau-band mixing, we shall consider a simple system
of two adjacent LBs. Since we are interested in interband mixing of opposite chirality, we
consider those states with energy between the lower and the upper bands whose centres are at
El and Eu, respectively, as shown in figure 2(a). Thus, equipotential loops are Vl = E − El > 0
and Vu = E − Eu < 0 for the lower and the upper LBs, respectively. Using the semiclassical
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Figure 1. (a) Four neighbouring loops in a one-band model for the case of V0 < 0. Dashed lines
denote quantum tunnellings. The arrows indicate the drifting direction. (b) Loops localized around
a valley and a peak, respectively. The arrows inside a loop show the directions of local potential
gradient around the peak or valley. The arrows on a loop indicate the drifting direction.

theory described in the previous paragraphs, states from the upper band should move along
equipotential loops around potential valleys while those from the lower band around potential
peaks as shown in figure 2(b). The loops for the upper band drift in the clockwise direction,
and those for the lower band in the anticlockwise direction. These two sets of loops are thus
spatially separated and have opposite chirality. If we assume that peaks and valleys of random
potential form two coupled square lattices, the loops can be arranged as shown in figure 3(a),
where P and V denote peaks and valleys, respectively. In the absence of interband mixing, the
model is reduced to two decoupled single-band models and all electronic states between the
two LBs are localized. If we introduce interband mixing, the localized loops may become less
localized. To see this, let us consider an extreme case with no tunnellings at saddle points, but
with such a strong interband mixing that an electron will move from a loop around a valley to
its neighbouring loop around a peak and vice versa, as shown by B → C in figure 3(a). Follow
the trajectory of an electron starting at A; it will be A → B → C → D → E · · ·. The electron
is no longer confined on a closed loop, but delocalized!

Before going on, we would like to give a short discussion on the relation between large
disorder magnitude and weak magnetic field. The above semiclassical picture for the network
model is valid only when the typical fluctuation length of random potential, denoted by LF,
is much larger than the magnetic length lc = √

h̄/(eB). Let us take LF as a large fixed
value. Then, the effect of inter-band mixing is controlled mainly by two parameters. One
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Figure 2. (a) Two adjacent Landau bands in the case when the disorder broadened band width is
comparable with the Landau gap. D(E) is the density of states. Eu and El denote the centres of the
two bands. (b) Schematic plot of the two sets of equipotential loops on the two-dimensional random
potential for electronic states of energy E shown in (a). It is the projection of a 3D landscape on a
2D vertical plane. The solid curve represents the schematic plot of the 2D random potential. Two
dashed horizontal lines indicate two constant potential planes V (�r) ≡ V0, one for the lower band
with V0 = Vl = E − Eu > 0 and the other for the upper band with V0 = Vu = E − El < 0.
The ellipses denote the loops where the two constant potential planes intersect with the 2D random
potential. Arrows on the loops show drifting directions. �B is the magnetic field.

is the ratio of disorder magnitude W and Landau gap h̄ωc, which is proportional to W/B and
determines whether inter-band mixing needs to be considered. The other is the ratio of the
magnetic length lc and the typical distance between an upper-band loop and its neighbouring
lower-band loop LF

h̄ωc
W , which is proportional to W/B3/2 and determines the typical strength

of inter-band mixing in the network model. Therefore, the cases of strong disorder W and weak
magnetic field B are, to some extent, equivalent in the network model since both of them lead
to large inter-band mixing. Of cause, values of local potential gradients are also important,
since they determine the detailed distribution of inter-band mixing in the model.

In the one-band model, an electron can also hop from one loop to its neighbouring loops
by quantum tunnellings. At a first glance, this effect seems similar to that of interband mixing.
However, they are fundamentally different. In the one-band model, electronic states for a given
V0 have the same chirality. Thus the drifting direction of an electron will be inverted when it
tunnels into neighbouring loops. This means that a strong tunnelling in a one-band model will
induce an effective backward-scattering that tends to also localize electrons. We can understand
this by considering a small part of the one-band model as shown in figure 1(a) where all loops
are moving in a clockwise direction. Without tunnelling, the trajectory of an electron starting
from point A is A → B → I → J → A, a clockwise closed loop. With strong tunnellings,
the trajectory will tend to be A → B → C → D · · · → H → A, an anticlockwise closed loop.
Thus, the tunnellings between loops of the same chirality cannot delocalize states.

The two-channel CC model can also be used to simulate both spin-degenerate and bilayer
systems. The model for the spin-degenerate system is the same as we use. The only difference
is that loops for spin-up and spin-down states are present at the same positions in real space, and
the chiralities of loops of spin-up and spin-down states are the same, while the main difference
between the model for the bilayer system and ours is that the real space distributions of random
potentials in the two layers are different.
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Figure 3. (a) Topological plot of the trajectories of the drifting motion of guiding centres (rhombus).
The drifting motion around a potential peak (valley) is denoted by P (V), and their directions
are indicated by the arrows. Dashed lines stand for interband mixing, and dash–dotted lines for
tunnelling at saddle points. The thick line (A–I) describes the trajectory of an electron due to a
strong interband mixing. (b) The equivalent two-channel network model of (a). Solid and dashed
lines on each link denote two channels from two LBs. Squares stand for saddle points. P, V and
arrows have the same meaning as those in (a).

It is worthwhile to explain why we consider only those states between two LB centres.
For states outside this range, both sets of loops are localized around either valleys or peaks.
This means that interband mixing mainly occurs between two loops localized around the same
position, and this mixing will not delocalize a state. In fact, as explained in the previous
paragraph, the mixing of the same chirality does not help delocalizing an electron. This is
why we shall consider mixing between spatially separated states with opposite chirality. Of
course, it does not mean that the mixing of the same chirality has no effect at all. As it was
found in some previous works [7], this kind of mixing may shift an extended state from its LB
centre. Level shifting due to mixing between states of the same chirality may distort the shape
of the phase diagram, but should not alter its topology. The emergence of the bands of extended
states is exclusively due to the mixing between states of opposite chirality.

Now, we describe our two-channel network model in detail. Assume that tunnellings
of two neighbouring localized states (loops) of the same band occur around saddle points,
and interband mixing takes place only on the links; figure 3(a) is topologically equivalent
to the model shown in figure 3(b). Figure 3(b) is the schematic illustration of our two-
channel Chalker–Coddington network model. It is similar to the model studied in previous
publications [36, 37]. There are two channels on each link. One, denoted by a solid line, is



Inter-Landau-band mixing in a quantum Hall system 2035

Zl
in,1

Zu
in,1

Zu
out

Zin
u Zin

l

Zl
out

Zu
out,1

Zout,2
uZl

out,2

Zu
in,2

Zl
in,2

Zout,1
l

(a) (b)

Figure 4. (a) A node with four incoming and four outgoing channels. Z in,i
u(l) is the wavefunction

amplitude of the i th incoming wave from the upper (lower) LB. Z out,i
u(l) is that of outgoing

wavefunction amplitude. (b) A link with two channels. Z in(out)
u(l) is the incoming (outgoing)

wavefunction amplitude of the upper (lower) LB.

from the lower LB around a potential peak. The other (dashed line) is from the upper LB
moving around a potential valley. The arrows indicate the drifting direction of the two sets of
states. At each node, the tunnelling between two neighbouring states of the same LB occurs.
As shown in figure 4(a), let Z in,1

u(l) and Z in,2
u(l) be the incoming wave amplitudes of states 1 and 2

from upper (lower) LB, respectively, and Z out,1
u(l) and Z out,2

u(l) be the outgoing wave amplitudes of
the two states. The tunnelling is described by an SO(4) matrix




Z out,1
u

Z out,2
u

Z out,1
l

Z out,2
l


 =




sR
u sL

u 0 0

−sL
u sR

u 0 0

0 0 sR
l sL

l

0 0 −sL
l sR

l







Z in,1
u

Z in,2
u

Z in,1
l

Z in,2
l


 , (3)

where the subscripts u and l denote the upper and the lower bands, respectively. The elements
sL

u(l) and sR
u(l) are tunnelling coefficients of an incoming wavefunction in the upper (lower) band

being scattered into outgoing channels on its left-hand and right-hand sides, respectively. sR
u(l)

and sL
u(l) are related to each other as sR

u(l) =
√

1 − (sL
u(l))

2 due to the orthogonality of the matrix.

Under the quadratic potential barrier approximation—i.e., V (x, y) = −U x2+U y2+Vc around
a saddle point, where U is a constant describing the strength of potential fluctuation and Vc is
the potential barrier at the point—one can show that the left-hand scattering amplitude is given
by [38]

sL
u(l) = [1 + exp(−πεu(l))]−1/2, (4)

where εu(l) = [E + Vc − (nu(l) +1/2)E2]/E1 with E being electron energy, E1 = h̄ωc

2
√

2

√
K − 1,

E2 = h̄ωc√
2

√
K + 1, and K =

√
64U2

m2ω4
c
+ 1. The energies of the cyclotron motion in the two

bands are (nu + 1/2)E2 and (nl + 1/2)E2, respectively, where nu(l) are the band indices and

�n = nu − nl = 1. The dimensionless ratio Er = E2/E1 = 2
√

1 + 2
K−1 approaches two

from above as U or the inverse of ωc increases [38], i.e., the strong disorder regime or a weak
magnetic field. In our calculations, we choose it to be 2.2 since this is the regime we are
interested in. For convenience, we choose E2 as the energy unit and the cyclotron energy of
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the lower band as the reference point. The energy regime between the two band centres is thus
E ∈ [0, 1].

Inter-band mixing between two channels on a link as shown in figure 4(b) is described by
a U(2) matrix (

Z out
l

Z out
u

)
= M

(
Z in

l

Z in
u

)
, (5)

M =
(

eiφ1 0
0 eiφ2

)(
cos θ sin θ

− sin θ cos θ

) (
eiφ3 0
0 eiφ4

)
, (6)

where sin θ describes the interband mixing. φi (i = 1–4) are random Aharonov–Bohm
phases accumulated along propagation paths. In our calculations, we shall assume that they
are uniformly distributed in [0, 2π] [34]. In the following discussion, a parameter J , defined
as

√
J/(1 + J ) = sin θ , is used to characterize the mixing strength. J will take the same value

for all links in our calculations. We hope that this simplification will not affect the physics.

3. The application of the level-statistics technique on the network model

Electron localization length is often obtained from the transfer matrix method. For a two-
dimensional system, however, it is well known that this quantity alone does not provide
conclusive answers to questions related to the metal–insulator transition (MIT) [39]. On the
other hand, level-statistics analysis has been used in studying MIT [40, 41]. Level-statistics
analysis is based on random matrix theory (RMT) [42]. The basic idea is that the localization
property of an electronic state can be determined by the statistical distribution function P(s)
of the spacing s of two neighbouring levels. For localized states, the distribution is Poissonian
PPE(s) = exp(−s), called a ‘Poissonian ensemble (PE)’. In the case of extended states, the
nearest neighbour level spacing distribution has the following form [42]:

P(s) = C1(β)sβ exp[−C2(β)s2] (7)

where C1(β) and C2(β) are normalization factors determined by
∫

P(s) ds = 1 and∫
s P(s) ds = 1. The parameter β is determined by the dynamical symmetry of the system.

The case of β = 1 is for systems with time-reversal symmetry and an integer total angular
momentum and is referred to as a ‘Gaussian orthogonal ensemble’. Systems with time-reversal
symmetry and a half-integer total angular momentum belong to the case of β = 4, called a
‘Gaussian symplectic ensemble’. For systems without time-reversal symmetry β = 2, and it
is called the ‘Gaussian unitary ensemble (GUE)’. A fundamental difference between the level
statistics property of extended states and localized states is that P(s) at s = 0 is zero for
extended states and one for localized states. The physical reason for this difference is the so-
called ‘level repulsion’ of extended states. Two extended states with the same ‘bare energy’ will
overlap in real space (since they are extended in real space) and form two new extended states
with different energies, while localized states can have the same energy staying in different
regions of real space. This approach is appropriate for the network model of quantum Hall
systems because localized states in the model are loops in different regions of real space while
extended states in the model are formed by quantum percolation of such localized loops.

We shall follow the approach proposed by Klesse and Metzler [43]. A quantum state of
a network model can be expressed by a vector whose components are electronic wavefunction
amplitudes on the links. In our case, the vector can be written as � = ({Z i

u, Z i
l }), where Z i

u
and Z i

l are the electron wavefunction amplitudes of the upper band (u) and the lower band (l)
on the i th link, respectively. As shown by Fertig [44], the network model can be described by
an evolution operator Û(E), an E-dependent matrix determined by the scattering properties
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of nodes and links in the model. (As an example, the evolution operator of a two-channel
network of size L = 2 with periodic boundaries on both directions is constructed explicitly in
the appendix.) In general, the eigenvalue equation of the evolution operator is

Û(E)�α(E) = eiωα(E)�α(E), (8)

where α is the eigenstate index of Û . The true eigenenergies {En} of the system are those
energies at which ωα(E) is an integer multiple of 2π . It has been shown by Klesse and
Metzler [43] that the set of quasi-energies {ωα(E)} corresponds to the excitation spectrum
of the stationary state with energy E . Therefore, the statistics property of the set of quasi-
energies {ωα(E)} at E is the same as that of true eigenenergies {En} around E , and the
localization property of an electronic state with an energy E can be obtained by the quasi-
energies. The advantage of this approach is that all the quasi-energies can be used in the analysis
so that better statistics can be obtained.

Chalker and Coddington [34] showed numerically that an open boundary condition along
one direction creates extended edge states along the other direction. In order to get rid of the
edge states, we employ a periodic boundary along both directions in our calculation. For a
two-channel network model of L × L nodes with periodic boundaries along both directions,
there are 4L2 components in �. Û is thus a (4L2) × (4L2) matrix. However, there is a special
property of the network model [45]: the nodes scatter electrons only from vertical channels into
horizontal channels and vice versa. If one separates � into the set of wavefunction amplitudes
on the horizontal links �H and the set of wavefunction amplitudes on the vertical links �V, the
evolution equation in one time step can be written in the following form:(

�H(t + 1)

�V(t + 1)

)
=

(
0̂ ÛV→H

ÛH→V 0̂

) (
�H(t)
�V(t)

)
, (9)

where 0̂ is the (2L2)×(2L2) zero matrix. ÛV→H describes how the wavefunction on the vertical
links evolves into that on the horizontal links. Similarly, ÛH→V describes that from horizontal
to vertical links. For the detailed derivation, we refer readers to the example shown in the
appendix. The evolution equation in two time steps is given as

�H(t + 2) = ÛV→HÛH→V�H(t) (10)

�V(t + 2) = ÛH→VÛV→H�V(t). (11)

Therefore, the evolution matrix in two time steps is block diagonal and the two blocks have
essentially the same statistical property. We thus need only consider one of them.

We study the model for L = 8, 12, 16, 20 and 24. The calculation procedure is as follows.
Take a realization of the random phases, construct the evolution matrix and obtain the quasi-
energies {ωi }. Put them in descending order and calculate the level spacings si = (ωi −ωi−1)/δ,
where δ is the average of si . Repeat this procedure sufficient times so that more than 5 × 104

level spacings are collected for a given E and J . The level-spacing distribution function P(s)
is thus obtained numerically.

4. Numerical results and discussions

4.1. Analysis of the level-spacing spectrum

We shall analyse the numerical results of the level-spacing distribution function P(s) in order
to provide evidence for the existence of extended state bands in our model. Due to the
chirality nature of the drifting motion, time-reversal symmetry is absent from our semiclassical
network model. Then, according to the RMT [42], P(s) should be the GUE distribution,
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Figure 5. P(s) versus s for L = 8, 24 and PGUE(s). (a) E = 0 and J = 0.1; (b) E = 0.02 and
J = 0.1; (c) E = 0.5 and J = 1.5.

PGUE(s) = 32π−2s2 exp(−4s2/π), for extended states, and the PE distribution PPE(s) for
localized states. Since the overall shape of the GUE distribution is quite different from that of
the PE distribution, one may use P(s) to distinguish an extended state from a localized state.
Figure 5 is PGUE(s) and P(s) for (E = 0, J = 0.1) (a), (E = 0.02, J = 0.1) (b), and
(E = 0.5, J = 1.5) (c) with L = 8, 12, 16, 20, 24. Figure 6 is P(s) for (E = 0.0, J = 0.7)

(a), (E = 0.02, J = 0.7) (b) and (E = 0.5, J = 0.5) (c).
The overall shape of these curves has some common features. All curves have a vanishing

value when s goes to zero. At small s they increase with s and reach a peak at some intermediate
s. Then they decrease monotonically to zero with increasing s. These features are the same as
those for PGUE(s) [45]. Thus they all look like PGUE(s) at first glance. This raises the question
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Figure 6. P(s) versus s for L = 8, 24 and PGUE(s). (a) E = 0 and J = 0.7; (b) E = 0.02 and
J = 0.7; (c) E = 0.5 and J = 0.5.

of how to distinguish numerically extended states from localized states. As a simple way, it is
natural to expect that P(s) for an extended state approaches PGUE(s) while that for a localized
state should deviate from PGUE(s) as L increases. Indeed, as L increases, curves in each sub-
figure of figure 5 approach PGUE(s) while those in figure 6 show the opposite tendency. Thus
we can use this different tendency of P(s) to distinguish extended states from localized states.
We shall show quantitatively that such opposite tendency for extended states and localized
states also exists in several other characteristic quantities.

Let us first consider a characteristic quantity I0 defined by I0 = ∫
s2 P(s) ds/2. It is

commonly used to characterize the overall shape of P(s) and to examine the localization
property [45]. It is well known that I0 = 1 for localized states while I0 < 1 for extended
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Figure 7. I0 versus J for L = 8, 12, 16, 20, 24, (a) E = 0; (b) E = 0.02; (c) E = 0.5.

states [42]. Thus, the following simple criterion is employed: a state is localized if its I0

increases and approaches 1 as L increases. Otherwise, it is extended. Curves in figure 7 are
I0 versus mixing strength J for E = 0 (a); 0.02 (b); and 0.5 (c) for L = 8, 12, 16, 20, 24.
Figure 7(b) shows that the state of E = 0.02 is localized at zero mixing and extended at small
J . Then it is localized again after J passes a particular Jc where I0 of different L cross. For
the state of E = 0 at the lower band centre shown in figure 7(a), it is extended at zero mixing.
Then, it shows the same feature as the state of E = 0.02 at small and large J . Figure 7(c)
shows that the state of E = 0.5 is always localized at small J and extended only for large
J (>1) where all curves of different system sizes tend to merge together.

A fundamental difference between P(s) for a localized state and that for an extended states
is its behaviour at small s. As s goes to zero, P(s) vanishes for extended states due to level



Inter-Landau-band mixing in a quantum Hall system 2041

(a)

(b)
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Figure 8. IP (s) versus s for L = 8, 12, 16, 20, 24 and that for PGUE(s). (a) E = 0 and J = 0.1;
(b) E = 0.02 and J = 0.1; (c) E = 0.5 and J = 1.5.

repulsion while it approaches 1 for localized states due to level aggregation [42]. Thus we need
to consider the behaviour of P(s) at small s for a further test of the results in the last paragraph.
It is convenient to consider a function of integrated level-spacing distribution at small s defined
by IP (s) = ∫ s

0 P(s′) ds′. IP (s) is the fraction of level spacing smaller than s. Although P(s)
in most cases of our numerical results is close to the GUE distribution, the level repulsion of
extended states and level aggregation of localized states should still be expected at small s.
This leads to the following criterion: IP (s) at small s should increase (decrease) with L for
localized (extended) states. Thus the behaviour of IP (s) at small s can serve as another way of
distinguishing extended states from localized ones. Figure 8 shows IP (s) for (E = 0, J = 0.1)

(a), (E = 0.02, J = 0.1) (b) and (E = 0.5, J = 1.5) (c) for L = 8, 12, 16, 20, 24 and
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Figure 9. IP (s) versus s for L = 8, 12, 16, 20, 24 and that for PGUE(s). (a) E = 0 and J = 0.7;
(b) E = 0.02 and J = 0.7; (c) E = 0.5 and J = 0.5.

comparison with IP (s) of PGUE(s). Figure 9 is for (E = 0, J = 0.7) (a), (E = 0.02, J = 0.7)

(b) and (E = 0.5, J = 0.5) (c). One can see clearly that states in figure 8 show the feature of
extended states while states in figure 9 are localized. In order to examine an electronic state of
fixed energy in the whole range of mixing, we consider IP (s = 0.5), the fraction of the level
spacings less than 0.5. We plot the results of IP (s = 0.5) versus J at E = 0, 0.02 and 0.5 for
L = 8, 12, 16, 20, 24 in figure 10. Similar to the criteria for IP (s), we use the following ones. If
IP (0.5) of a state increases with L, the state is localized. Otherwise, it is extended. According
to this criterion, curves in figure 10 give essentially the same results as those obtained from I0

in figure 7.
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Figure 10. IP (s = 0.5, J ) versus J for L = 8, 12, 16, 20, 24. (a) E = 0; (b) E = 0.02; (c)
E = 0.5.

Let us now turn to the region of large s. Since PGUE(s) decays faster than PPE(s)
at large s, the behaviour of P(s) in this region can also be used to differentiate extended
and localized states. In this region it is convenient to consider another quantity defined by
F(s) = ∫ ∞

s P(s) ds = 1 − IP (s). The meaning of F(s) is the integrated fraction of level
spacings larger than s. Since F(s) of PGUE(s) is less than that of PPE(s) at large s, we
may expect that F(s) at larger s decreases (increases) with L for extended (localized) states.
Figure 11 is F(s) for PGUE(s) and that for (E = 0, J = 0.1) (a), (E = 0.02, J = 0.1)

(b), and (E = 0.5, J = 1.5) (c) with L = 8, 12, 16, 20, 24. Figure 12 is F(s) versus s for
(E = 0, J = 0.7) (a), (E = 0.02, J = 0.7) (b), and (E = 0.5, J = 0.5) (c). In view
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Figure 11. F(s) versus s for L = 8, 12, 16, 20, 24, and that for PGUE(s). (a) E = 0 and J = 0.1;
(b) E = 0.02 and J = 0.1; (c) E = 0.5 and J = 1.5.

of figures 8 and 9, it is clear that the results of F(s) coincide with those of IP (s) concerning
the localization property. We also calculate F(s = 2) for fixed energy states in the whole
range of mixing. As shown above, the same criterion as that for I0 and IP (s = 0.5) can be
employed. The curves of F(s = 2) versus J are plotted in figure 13 for E = 0 (a), E = 0.02
(b) and E = 0.5 (c). One can see that they are consistent with the results of I0 (figure 7) and
IP (s = 0.5) (figure 10).

4.2. Discussion of finite-size effect

In this subsection, we shall consider the possible influence of the finite-size effect on our
numerical results. It is known that localization lengths for 2D models can exceed 3 × 104
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Figure 12. F(s) versus s for L = 8, 12, 16, 20, 24 and that for PGUE(s). (a) E = 0 and J = 0.7;
(b) E = 0.02 and J = 0.7; (c) E = 0.5 and J = 0.5.

lattice spacings, a thousand times larger than the maximum lattice size L = 24 in our
numerical calculation. Therefore, one should worry about the finite-size effect, and question
the unsuitability of our simple criteria for the localization property. In the following discussion,
we shall only examine the results of the quantity I0. Essentially the same discussions can be
made for other quantities such as IP (s) and F(s).

Let us first consider the results for E = 0 and 0.02 in figure 7. The two cases are quite
similar. Curves for different L cross at a single point Jc. As L increases, I0 decreases and
approaches the value for extended states when J < Jc, while it increases and approaches the
value for localized states when J > Jc. A straightforward way of interpreting this behaviour is
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Figure 13. F(s = 2, J ) versus J for L = 8, 12, 16, 20, 24. (a) E = 0; (b) E = 0.02; (c) E = 0.5.

that the state exhibits a transition from an extended state in J < Jc to a localized one in J > Jc.
The correlation length diverges at critical point J = Jc and decreases sharply when J is slightly
away from Jc. (In a metallic phase the correlation length is small while the localization length
is divergent.) Fluctuations at a length scale of the order of the correlation length cause I0 to
deviate from its thermodynamic-limit value, but I0 approaches its thermodynamic-limit values
for both J < Jc and J > Jc as lattice size increases. This is a natural explanation of the
results. The only finite-size effect in this explanation is rounding behaviour in a region close to
the critical point J = Jc. This region is normally very narrow because of the sharp drop of the
correlation length near J = Jc.

Another possible interpretation is to assume that states are always localized in the whole
region except at J = Jc. In this case, the localization length is equal to the correlation length.
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Then, in order to explain the above behaviour, we have to assume the following features of
the localization length: (a) in the region J < Jc, the ratio of localization length ξ(L) and
system size L should increase with L for small L, leading to a false metallic behaviour, while
this ratio decreases with L for large L, a behaviour for the localized state; (b) in the region
J > Jc, ξ(L)/L should always decrease with L. In principle, one cannot rule out this
possibility without doing calculations for large lattice sizes. However, (a) is too strange to
justify. Furthermore, there is no reason to believe why (a) occurs in region J < Jc, but not in
region J > Jc.

For E = 0.5 in figure 7, localized behaviour is clearly seen for small and intermediate J
while the curves of different system size tend to merge at large J . Here the finite-size effect
should be considered seriously. There are two ways to explain the merging behaviour. One is
that a line of critical points exists for large J where the correlation length is always divergent.
The other is that the correlation length at the thermodynamic limit is very large yet finite and
the merging behaviour is just a finite-size effect. Unlike the case of E = 0 and 0.02, both
explanations in this case are reasonable. The only way to draw an unambiguous conclusion is
to do calculations for large sizes.

However, we can propose a physical picture for the existence of new extended states at
E ∼ 0.5 in the case of strong interband mixing. Assuming that the intraband tunnelling at
nodes is negligibly weak for states of E ∼ 0.5, we have seen already from figure 3(a) that
the maximum interband mixing (sin θ = 1) delocalizes the state which is localized at zero
interband mixing. If one views p = sin2 θ as the connection probability of two neighbouring
loops of opposite chiralities, our two-channel model without intraband tunnellings at nodes is
analogous to a bond-percolation problem. It is well known that a percolation cluster exists
at p � pc = 1/2 or J � Jc = 1 for a square lattice [35]. Therefore, an extended state is
formed by strong mixing. One hopes that the intraband tunnellings at nodes will only modify
the threshold value of the mixing strength. If this picture is correct, the finite-size effect only
affects our efforts to determine the accurate value of Jc yet it does not influence the existence
of such a critical point.

It should be noted that all the above discussions are based on the single-parameter
scaling argument. Suppose that the region of extended states in the thermodynamic limit is
vanishing instead of remaining finite; our above numerical results can also be explained by
introducing irrelevant length scales and considering their corrections to scaling, as has been
pointed out by Pruisken [4] and Huckstein [28]. Thus both our picture of a finite region of
extended states and the idea of corrections to scaling are alternative explanations for non-
scaling behaviours. Therefore, calculations for larger sizes of system are necessary to draw
an unambiguous conclusion for the width of the extended state region in the thermodynamic
limit. In a recent theoretical study, Pruisken et al [27] have developed a microscopic theory
based on the nonlinear σ model to explain the non-scaling behaviours within the assumption
of a single critical point. However, in their consideration of the case of long-range correlated
disorder which corresponds to the network model, interband mixing, the physical reason for
the existence of the finite region of extended states in our picture, is neglected. Therefore, their
study does not rule out the possibility of a finite region of extended states.

4.3. Discussion of localization property

In the past two subsections, we analysed the global shape of P(s) and its behaviour at small and
large s by considering I0, IP (s) and F(s), respectively, and discussed the possible influence of
the finite-size effect. Analysis of all these quantities leads to essentially the same conclusion
concerning the localization property, as follows. For zero interband mixing, only states at
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Figure 14. I0 versus E for L = 8, 12, 16, 20. (a) J = 0.1; (b) J = 0.7; (c) J = 1.5.

(This figure is in colour only in the electronic version)

the two LB centres are extended. In the presence of interband mixing, new extended states
emerge. States near the LB centres—i.e., E ∼ 0—are delocalized by weak interband mixing
and localized by strong mixing, with a transition point at some intermediate mixing Jc. For
states near the region between two LBs—i.e., E ∼ 0.5—they are localized at both weak and
intermediate mixing and delocalized by strong mixing.

In order to show explicitly the existence of a narrow band of extended states and its
evolution with increasing mixing, curves of I0 versus E are plotted for three values of J in
figure 14. A band of extended states is formed around the LB centre E ∈ [0, 0.1] for J = 0.1.
When J is increased to an intermediate value 0.7, this band of extended states is lifted up to
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Figure 15. (a) Topological phase diagram of electron localization in the E–J plane. The shadowed
regime is for extended states (metallic phase). (b) Topological QH phase diagram in the W–B plane.
W stands for the disorder strength, and B for the magnetic field. The shadowed regime is for the
metallic phase. The area indicated by the symbol n is the n-plateau IQHE phase. The remaining
area is the insulating phase.

E ∈ [0.8, 1.6]. For strong mixing, it is further shifted to E ∈ [0.4, 0.5]. Thus the band of
extended states in the lower LB tends to float up in energy while that of the upper tends to dive
down in energy as mixing strength increases. The two bands should finally meet in the middle
energy region in the case of strong mixing.

The above results are restricted to the case of two LBs. However, there are an infinite
number of LBs in a realistic system. In order to conjecture the situation when an infinite
number of LBs is incorporated in our result, we take into account the float-up-merge picture
proposed by Sheng et al [12]. We shall expect that a narrow extended band appears in each LB
centre for weak interband mixing. Increasing mixing, i.e., increasing disorders or decreasing
magnetic field, the extended band in the lowest LB floats up and finally merges with that in
the second lowest LB. Then, this extended band will further shift up and merge into that in the
third lowest LB, and so on and so forth.

To express our numerical results in the plane of energy and interband mixing, a topological
phase diagram shown in figure 15(a) is obtained. In the absence of interband mixing, only
the singular energy level at each LB centre is extended. In the presence of interband mixing
of opposite chiralities, there are two regimes. At weak mixing, each of the extended states
broadens into a narrow band of extended states near the LB centres. With increased mixing, the
extended states in the lowest LB shift from the LB centre (see figure 14). These extended states
will eventually merge with those from the higher LBs. This shifting of bands of extended states
is similar to the shifting of single extended states at LB centres observed in previous studies [5]
where emerging of extended bands is missing. At strong mixing, a band of extended states
exists between neighbouring LBs where all states are localized without the mixing.

Let us look at the consequences of the above results. For weakly disordered systems in
the IQHE regime, the Landau gap is larger than the LB bandwidth. Thus there is no overlap
between adjacent LBs. According to the semiclassical picture, electronic states between the two
adjacent LBs should be from either the upper or the lower bands with the same chirality in this
case. This means that no interband mixing occurs and there is only one extended state in each
LB. This may explain why scaling behaviours were observed for plateau transitions in early
experiments on clean samples. Interband mixing occurs when the Landau gap is less than the
LB bandwidth. Systems of relatively strong disorders in the IQHE regime should correspond to
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Figure 16. The original experimental data of ln[Rxx ( f, T )/Rxx (0.647, 40 mK)] in [18] f is the
filling factor of LBs and T is the temperature.

this case. As the single extended state at each LB centre broadens into a narrow extended band,
a narrow metallic phase emerges between two neighbouring IQHE phases. Thus each plateau
transition contains two consecutive quantum phase transitions for strongly disordered systems.
The bands of extended states will merge together in strong mixing. This strong mixing regime
corresponds to the case when the Landau gap is much smaller than the bandwidth. Since the
Landau gap is proportional to the magnetic field, the disordered system should always enter
the strong mixing regime before it reaches the weak field insulating phase, regardless of how
weak the disorders are. In terms of QH plateau transitions, a direct transition occurs because a
narrow metallic phase exists between two QH phases in a weak field. Thus, we propose that a
direct transition from an IQHE phase to the insulating phase at weak field is realized by passing
through a metallic phase, and it should hold for both weak and strong disordered systems.

Plotting the above results in the plane of disorder and the magnetic field, we obtain a new
topological QH phase diagram as shown in figure 15(b). This is similar to the empirical diagram
obtained experimentally in [15]. The origin (W = 0, B = 0) is a singular point. According to
the weak localization theory [1], no extended state exists at this point. Differing from existing
theories, there exists a narrow metallic phase between two adjacent IQHE phases and between
an IQHE phase and an insulating phase.

4.4. Comparison with previous studies

In this subsection, we shall compare our results with previous studies. We shall show that
the new phase diagram in figure 15 is consistent with the non-scaling experiments [21] where
samples are relatively dirty, and interband mixing is strong, corresponding to a process along
line a in figure 15(b). The system undergoes two quantum phase transitions each time it
moves from the QH insulating phase to IQHE phase of n = 1 and back to the weak field
insulating phase as the magnetic field decreases. To verify this claim, we analysed the original
experimental data in [18] according to the assumption of two quantum phase transition points.
The experimental data of the logarithm of the longitudinal resistance ln[Rxx ( f, T )] are shown
in figure 16 where f is the filling factor of LBs and T is the temperature. According to the
theory of continuous transitions, one should obtain

ln[Rxx (ν, T )] = F1(S1( f )/T ) (12)

with S1( f ) ∼ ( fc1 − f )z1ν1 for the region of f < fc1 while

ln[Rxx (ν, T )] = F2(S2( f )/T ) (13)

with S2( f ) ∼ ( f − fc2)
z2ν2 for the region of f > fc2. Previous theories predict one single

critical point—i.e., fc1 = fc2 and z1ν1 = z2ν2. But our results suggest two distinct critical
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Figure 17. The fitting result of two critical points on the left and the right side. The two straight
lines show coincidence with the scaling law. The critical filling factors are fc1 = 0.6453 and
fc2 = 0.6477. The two critical exponents are equal to the value zν = 2.33 ± 0.01.

S2

1

ln
[S

(f
)]

– 4.8 – 4.5 – 4.2 – 3.9 – 3.6 – 3.3
– 3.5

– 2.5

– 1.5

– 0.5

0.5

1.5
S

|cln|f –f

Figure 18. The best fitting result of one single critical point on the left and the right side. The
critical filling factor is fc = 0.646. The two straight lines illustrate systematic deviations from the
scaling law at regions close to the critical point. The average values of the two critical exponents
are z1ν1 = 2.58 ± 0.02 and z2ν2 = 2.60 ± 0.02, respectively.

points. By standard scaling analysis, two good scaling behaviours are obtained for two close
critical filling factors of fc1 = 0.6453 and fc2 = 0.6477 as shown in figure 17. The critical
exponents on both the left side and the right side of the transition region are equal to the value
zν = 2.33 ± 0.01. On the other hand, the fit for one single critical point fails. Figure 18 shows
the result of a single critical point at νc = 0.646. It is the best fitting result for a single critical
point if we require that the two critical exponents are approximately equal and the scaling law
is optimally obeyed. The two critical exponents are z1ν1 = 2.58±0.02 and z2ν2 = 2.60±0.02,
deviating from the theoretical results zν ∼ 2.33. One can also see clearly systematic deviations
from the scaling law in the region close to the critical point on both sides in figure 18. This
implies that the transition process is governed by two separate critical points instead of one.
The regime between the two critical points should correspond to the metallic phase.

It is worth noting that there is another puzzle in the non-scaling experiment which may be
solved by our two-critical-point picture. As an example, we consider the experimental data for
the transition between the QH insulating phase and the n = 1 IQHE phase. It was shown [21]
that the logarithm of the longitudinal resistance ln[Rxx ( f, T )] can be fitted by a linear function
of the filling factor f (see figure 16)

ln[Rxx ( f, T )] = ln[Rxx ( fc, T )] − ( f − fc)/(α + βT )] (14)
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where α and β are positive constants, fc is the filling factor where curves of different
temperature T cross approximately. Since α is non-zero [21], it leads to the conclusion that
Rxx ( f, T ) at the limit of T = 0 remains finite for every f . This is puzzling because it is
inconsistent with the theoretical requirement that Rxx (T = 0) = ∞ in the QH insulating
phase, i.e., f < fc, and Rxx (T = 0) = 0 in the n = 1 IQHE phase, i.e., f > fc. This puzzle
may be solved as follows. Combine the linear relationship between ln[Rxx ( f, T )] and f for
fixed T with our picture of two critical points fc1 < fc2; we expect

ln[Rxx ( f, T )] = ln[Rxx ( fc1, T )] − ( f − fc1)/(A1T zν) (15)

in the QH insulating phase, i.e., f < fc1, while

ln[Rxx ( f, T )] = ln[Rxx ( fc2, T )] − ( f − fc2)/(A2T zν) (16)

in the n = 1 IQHE phase, i.e., f > fc2, where A1 and A2 are positive constants, and z and ν are
critical exponents. It is clear that both Rxx ( f, T = 0) = ∞ in f < fc1 and Rxx ( f, T = 0) = 0
in f > fc2 are recovered. While a finite value of Rxx ( f, T = 0) in the region fc1 < f < fc2

is consistent with our prediction of a metallic phase between the two critical points.
Scaling behaviours of plateau–plateau transitions are observed in recent experi-

ments [29–33]. At a first glance, it seems that these results conflict with both non-scaling
experiments and our numerical results. However, there are two important differences between
recent scaling experiments and non-scaling experiments. One is that some scaling experi-
ments [29–31] were done deep inside the QH plateau, or far from the plateau transition point,
while the non-scaling behaviour was obtained by using data very close to the transition points.
In the non-scaling experiments [21], it is known that data not too close to a transition point
follow a scaling law. The other is that the samples used in all scaling experiments [29–33]
are clean with very high mobility while non-scaling behaviour was observed in relative dirty
samples [21–23]. In fact, the mobility in recent scaling experiments is at least one order of
magnitude larger than that in early non-scaling experiments. This means that the scaling and
non-scaling experiments correspond to regions of vanishing and relatively strong inter-band
mixing, respectively. Thus, there is no real conflict between the recent scaling experiments
and these early non-scaling experiments. Since our model is valid only when inter-band mix-
ing is considerable, there is also no real conflict between recent scaling experiments and our
numerical results.

The two-channel CC model has been used to simulate two degenerate or nearly degenerate
spin-resolved Landau subbands with strong interband mixing by Wang et al [7]. They found
two distinct critical points, which were related to mixing-induced repulsion [7]. For the nearly
degenerate case, they did not consider the states between the two LB centres. For the degenerate
case, their study could not discern whether the states between the two critical points are
extended or localized. According to our results, a band of extended states is formed around the
degenerate LB centre for the degenerate case at strong mixing, while for the nearly degenerate
case electronic states between the two LB centres are delocalized by strong mixing. Thus our
results are consistent with their results.

One should also notice that two types of metallic phases have been studied extensively
in the QH system. One is the composite fermion state at the half-filling in the lowest Landau
level (LL) and the other is the stripe state at the half-filled higher LLs. These states are formed
by the Coulomb interaction effect in the high mobility samples. They are different from our
metallic phase caused by level mixing. Although we have not considered the electron–electron
interactions in our study, there is no reason why the delocalization effect of level mixing will
be diminished by the Coulomb interaction. Of course, the interaction could lead to a level shift,
thus it may modify the band width.
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5. Conclusions

In conclusion, we find by numerical calculations within the network model that it is possible
that the single extended state at each LB centre in the absence of interband mixing may broaden
into a narrow band of extended states when the effect of mixing of states of opposite chirality
is taken into account. We also provide a physical picture to show how the mixing of states of
opposite chiralities may possibly lead to the existence of extended state bands. Based on the
above results, we propose a new phase diagram in which a narrow metallic phase exists between
two neighbouring IQHE phases and between an IQHE phase and an insulating phase. This new
phase diagram is consistent with non-scaling behaviours observed in recent experiments. A
standard scaling analysis on non-scaling experiment data [21] supports our results. However,
due to finite-size effects, our numerical results can also be explained based on the assumption
of a single critical point. Thus further study on large system size is still needed to conclude
whether there are extended state bands in quantum Hall systems in the thermodynamic limit.
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Appendix

In this appendix, we explicitly construct the evolution matrix Û for a 2 × 2 two-channel CC-
network model as shown in figure A.1. Periodical boundary conditions in both directions are
imposed as explained in section 3. Zs are the wavefunction amplitudes on links. The notations
are as follows. H and V stand for horizontal and vertical links, respectively. u (l) is for the
upper (lower) LB. Ŝi are SO(4) matrices defined in equation (3) describing the tunnelling on
nodes, and M̂i are U(2) matrices defined in equations (5) and (6) describing interband mixing.
From figure A.1 we can obtain




Z 1
u,H (t + 1)

Z 1
l,H(t + 1)

Z 2
l,H(t + 1)

Z 2
u,H(t + 1)


 = Ĥ1




Z 1
l,V(t)

Z 1
u,V(t)

Z 2
u,V(t)

Z 2
l,V(t)


 (A.1)




Z 3
u,H(t + 1)

Z 3
l,H(t + 1)

Z 4
l,H(t + 1)

Z 4
u,H(t + 1)


 = Ĥ2




Z 3
l,V(t)

Z 3
u,V(t)

Z 4
u,V(t)

Z 4
l,V(t)


 (A.2)




Z 1
l,V(t + 1)

Z 1
u,V(t + 1)

Z 2
u,V(t + 1)

Z 2
l,V(t + 1)


 = Ĥ3




Z 3
u,H(t)

Z 3
l,H(t)

Z 4
l,H(t)

Z 4
u,H(t)


 (A.3)




Z 3
l,V(t + 1)

Z 3
u,V(t + 1)

Z 4
u,V(t + 1)

Z 4
l,V(t + 1)


 = Ĥ4




Z 1
u,H(t)

Z 1
v,H (t)

Z 2
l,H(t)

Z 2
u,H(t)


 , (A.4)
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Figure A.1. A two-channel network model of 2 × 2 nodes with periodic boundaries along both
directions. Zs are the wavefunction amplitudes on links. The notations are as follows. H and V
stand for horizontal and vertical links, respectively. u (l) is for the upper (lower) LB. Ŝi are SO(4)

matrices describing tunnelling at nodes, and M̂i are U(2) matrices for interband mixing.

with

Ĥ1 =
(

1̂ 0̂
0̂ M̂1

)
Ŝ1; Ĥ2 =

(
M̂2 0̂
0̂ 1̂

)
Ŝ2;

Ĥ3 =
(

1̂ 0̂
0̂ M̂3

)
Ŝ3; Ĥ4 =

(
M̂4 0̂
0̂ 1̂

)
Ŝ4,

where 1̂ and 0̂ are the 2 × 2 identity and zero matrices, respectively. If we define

φH =




Z 1
u,H

Z 1
l,H

Z 2
l,H

Z 2
u,H

Z 3
u,H

Z 3
l,H

Z 4
l,H

Z 4
u,H




; φV =




Z 1
l,V

Z 1
u,V

Z 2
u,V

Z 2
l,V

Z 3
l,V

Z 3
u,V

Z 4
u,V

Z 4
l,V




,

then the evolution equation is
(

φH(t + 1)

φV(t + 1)

)
= Û

(
φH(t)
φV(t)

)
. (A.5)

The evolution operator Û is

Û =



0̂ 0̂ 0̂ Ĥ1

0̂ 0̂ Ĥ2 0̂
Ĥ3 0̂ 0̂ 0̂
0̂ Ĥ4 0̂ 0̂


 , (A.6)

where 0̂ is the 4 × 4 zero matrix. It has the structure of equation (9).
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